Contents
  1. 1. MySQL的三种复制方式
    1. 1.1. asynchronous replication
    2. 1.2. fully synchronous replication
    3. 1.3. semisynchronous replication
  2. 2. 重要参数
  3. 3. 如何开启lossless replication
  4. 4. 实践是检验真理的唯一标准
    1. 4.1. InnoDB commit : 三阶段提交过程
    2. 4.2. 测试点
  5. 5. 性能
    1. 5.1. semi-sync vs lossless semi-sync 的性能对比
  6. 6. CAP理论

https://dev.mysql.com/doc/refman/5.7/en/replication-semisync.html

MySQL的三种复制方式

  1. asynchronous 异步复制
  2. fully synchronous 全同步复制
  3. Semisynchronous 半同步复制

asynchronous replication

原理:在异步复制中,master写数据到binlog且sync,slave request binlog后写入relay-log并flush disk
优点:复制的性能最好
缺点:master挂掉后,slave可能会丢失事务
代表:MySQL原生的复制

async

fully synchronous replication

原理:在全同步复制中,master写数据到binlog且sync,所有slave request binlog后写入relay-log并flush disk,并且回放完日志且commit
优点:数据不会丢失
缺点:会阻塞master session,性能太差,非常依赖网络
代表:MySQL-Cluster

sync

semisynchronous replication

  • 普通的半同步复制

原理: 在半同步复制中,master写数据到binlog且sync,且commit,然后一直等待ACK。当至少一个slave request bilog后写入到relay-log并flush disk,就返回ack(不需要回放完日志)
优点:会有数据丢失风险(低)
缺点:会阻塞master session,性能差,非常依赖网络,
代表:after commit, 原生的半同步
重点:由于master是在三段提交的最后commit阶段完成后才等待,所以master的其他session是可以看到这个提交事务的,所以这时候master上的数据和slave不一致,master crash后,slave数据丢失

semi

  • 增强版的半同步复制(lossless replication)

原理: 在半同步复制中,master写数据到binlog且sync,然后一直等待ACK. 当至少一个slave request bilog后写入到relay-log并flush disk,就返回ack(不需要回放完日志)
优点:数据零丢失(前提是让其一直是lossless replication),性能好
缺点:会阻塞master session,非常依赖网络
代表:after sync, 原生的半同步
重点:由于master是在三段提交的第二阶段sync binlog完成后才等待, 所以master的其他session是看不见这个提交事务的,所以这时候master上的数据和slave一致,master crash后,slave没有丢失数据

lossless

重要参数

参数 comment 默认值 推荐值 是否动态
rpl_semi_sync_master_wait_for_slave_count 至少有N个slave接收到日志 1 1 dynamic
rpl_semi_sync_master_wait_point 等待的point AFTER_SYNC AFTER_SYNC dynamic
rpl_semi_sync_master_timeout 切换复制的timeout 10000(10s) 1000(1s) dynamic
rpl_semi_sync_master_enabled 是否开启半同步 OFF ON dynamic
rpl_semi_sync_slave_enabled 是否开启半同步 OFF ON dynamic

如何开启lossless replication

1
2
3
4
5
6
########semi sync replication settings########
plugin_dir=/usr/local/mysql/lib/plugin
plugin_load = "rpl_semi_sync_master=semisync_master.so;rpl_semi_sync_slave=semisync_slave.so"
loose_rpl_semi_sync_master_enabled = 1
loose_rpl_semi_sync_slave_enabled = 1
loose_rpl_semi_sync_master_timeout = 1000

实践是检验真理的唯一标准

如何检验上述after_sync,after_commit
如何检验上述原理的正确性

InnoDB commit : 三阶段提交过程

1
2
3
A阶段. wite prepare log -- 写入Xid
B阶段. write binlog
C阶段. write commit log

测试点

master上当一个事务Waiting for semi-sync ACK from slave的时候,后来的事务是在A,B,C哪个阶段卡住呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
0,RC模式
1. semi-sync C阶段等待
假设设置time-out=100000s,当事务一提交了一个大事务,在write commit log(C阶段)时候等待,
那么第二个事务在敲commit命令的时候,是卡在哪个阶段呢?是卡在 wite prepare log(A阶段)?还是write binlog(B阶段)?还是write commit log(C阶段)
测试:semi-sync vs loss-less semi-sync
【semi-sync】 C阶段等待
0, 开启事务1,然后在slave上执行stop slave,制造timeout的情况,让其阻塞。(Waiting for semi-sync ACK from slave)
1,在开启一个事务2,事务2插入一条特殊记录(XXXXX)。 (Waiting for semi-sync ACK from slave)
2,在开启一个事务3
2.1,测试案例:这个时候,kill -9 mysqld,造成人为的mysql crash
3,假设卡在A阶段,那么事务3,肯定是看不到事务1,2写入的记录(XXXXX),且重启mysql后,事务2不会提交。
4,假设卡在C阶段,那么事务3,肯定是可以看见事务12写入的记录(XXXXX)。
经过测试:
1,是卡在C阶段,也就是说事务3是可以看见事务1,事务2的。
2,MySQL crash重启后,事务1,事务2的dml都已经提交成功,说明不是卡在A阶段
【loss-less semi-sync】B阶段等待
0, 开启事务1,然后在slave上执行stop slave,制造timeout的情况,让其阻塞。(Waiting for semi-sync ACK from slave)
1,在开启一个事务2,事务2插入一条特殊记录(XXXXX)。(Waiting for semi-sync ACK from slave)
2,在开启一个事务3
3,假设卡在A阶段,那么事务3,肯定是看不到事务1,2写入的记录(XXXXX),且重启mysql后,事务2不会提交。。
4,假设卡在B阶段,那么事务3,肯定是可以看见事务1,2写入的记录(XXXXX),且重启mysql后,事务12都会提交。。
5, 假设卡在C阶段,那么事务3,肯定是可以看见事务3写入的记录(XXXXX)。
经过测试:
1,是卡在B阶段,也就是说事务3,既看不见事务1的提交内容,也看不见事务2的提交内容,且重启mysql后,事务12都已经提交。。
2,MySQL crash重启后,事务1,事务2的dml都已经提交成功,说明不是卡在A阶段。

性能

semi-sync vs lossless semi-sync 的性能对比

根据以上的测试,可以得知,lossless只卡在B阶段,普通的semi-sync是卡在C阶段。
lossless的性能远远好于普通的semi-sync,即(after_sync 优于 after_commit)
因为lossless 卡在B阶段的时候可以堆积事务,可以在C阶段进行group commit。
普通的semi-sync,卡在C阶段,事务都已经commit了,并没有堆积的过程。

CAP理论

一致性【C】
可用性【A】
分区容忍性【P】
理论:CAP 三者不可兼得,必须要牺牲一个

分区,是一定存在的,不是你想不要就不要的。所以,这里只剩下两种组合

  • CP 牺牲可用性

这种做法,就是保留强一致性,牺牲可用性
案例:可以将rpl_semi_sync_master_timeout设置成一个无限大的值,比如:100天,那么master和slave就强一致了,但是可用性就大打折扣

  • AP 牺牲一致性

这种做法,就是保留高可用性,牺牲一致性
案例:比如原生的异步复制就是这样咯。可以快速做到切换,但是一致性就没有保障

Contents
  1. 1. MySQL的三种复制方式
    1. 1.1. asynchronous replication
    2. 1.2. fully synchronous replication
    3. 1.3. semisynchronous replication
  2. 2. 重要参数
  3. 3. 如何开启lossless replication
  4. 4. 实践是检验真理的唯一标准
    1. 4.1. InnoDB commit : 三阶段提交过程
    2. 4.2. 测试点
  5. 5. 性能
    1. 5.1. semi-sync vs lossless semi-sync 的性能对比
  6. 6. CAP理论

幸福,不在于得到的多

而在于计较的少